
Model-Based Design of Game AI

Alexandre Denault, Jörg Kienzle and Hans Vangheluwe
School of Computer Science, McGill University

Montréal, Canada, H3A 2A7
email: {adenau,joerg,hv}@cs.mcgill.ca

KEYWORDS
Modern Computer Games, Model Compilers, Rhapsody
Statecharts, Game AI.

ABSTRACT

The complexity of modern computer games has in-
creased drastically over the last decades. The need
for sophisticated game AI, in particular for Non-Player
Characters (NPCs) grows with the demand for realis-
tic games. Writing meaningful, consistent, modular,
re-useable and efficient AI code is not straightforward.
In this article, we suggest to model rather than to code
game AI. A variant of Rhapsody Statecharts is proposed
as an appropriate modelling formalism. The Tank Wars
game by Electronic Arts (EA) is introduced to demon-
strate our approach in a concrete setting. By modelling a
simple AI, it is demonstrated how the modularity of the
Rhapsody Statecharts formalism leads quite naturally to
layered modelling of game AI. Finally, our Statechart
compiler is used to synthesize efficient C++ code for
use in the Tank Wars main game loop.

STATECHARTS

Statecharts were introduced by David Harel in 1987
[Har87] as a formalism for visual modelling of the be-
haviour of reactive systems. A full definition of the
STATEMATE semantics of Statecharts was only pub-
lished in 1996 [HN96]. More recently, with the intro-
duction of UML 2.0, the Rhapsody semantics as de-
scribed in [HK04] is more tuned to the modelling of
software systems. In this article, we will use a sub-set
of the Rhapsody Statecharts semantics.
At the heart of the Statechart formalism is the notion of
discretestates and the transition between. Statecharts
are a discrete-event formalism which means it takes a
timed sequence of discreteevents as inputs and pro-
duces a timed sequence of discrete as output. Internally,
the system transitions between discrete states due to ei-
ther external or internal events. This leads to a piecewise
constant state trajectory inside the system as illustrated
in Figure 1. In Figure 2, a simple model is shown with
two statesstart andend. The small arrow pointing
to start denotes that state as thedefault initial state.
If the system is in statestart and it receivesevent,

Figure 1: Discrete-Event In/State/Out Trajectories

Figure 2: Statechart Basic Transition

and conditionguard evaluates totrue, the transi-
tion to stateend is taken and the side-effectaction
is executed. Additionally,entry/exit actions
are executed whenever a state is entered/exited. All of
the parts ofevent[guard]/action are optional.
The special eventafter(∆t) indicates that a transi-
tion will be taken autonomously after∆t time units (un-
less interrupted earlier). Statecharts add hierarchy to the
above basic notion of state automata. Figure 3 shows a
composite states1 with several nested states. Initially,
the system will start in nested states11 as at the top
level,s1 is the default state and withins1, s11 is the
default state. To understand the nesting, when in a state
such ass11, upon arrival of an event such asf, an out-
going transition is looked which is triggered by event
f. This lookup is performed traversing all nested states,
from the inside outwards. The first matching transition
is taken. This approach keeps the semantics determinis-
tic despite the seemingly conflictingf trigger on transi-
tions to boths13 ands2. When in states12, there is

Figure 3: Hierarchy in Statecharts

Figure 4: Modelling Structure and Behaviour

no conflict and eventf will take the system to states2.
When in states2, evente will take the system to state
s1. As the latter is a composite state, the system will
transition (after executings1’s entry action) to thes11,
the default state ofs1. In addition to hierarchy, State-
charts add orthogonal components and broadcast com-
munication to state automata. In our implementation
these features will not be used. The most interesting fea-
ture of Rhapsody statecharts is that it allows for a com-
bined description of structure and behaviour of objects.
This is achieved by adding Statechart behaviour descrip-
tions to UML Class Diagrams as shown in Figure ref-
fig:classdiagram. The behaviour of individual objects
(class instances) is described by the class’ statechart.
For conceptual clarity we require that methods in a class
will only have local effects. They can only change the
object’s attributes. All external effects must be mod-
elled in the Statechart. This allows for a clean sepa-
ration of externally visible, reactive, timed behaviour
from internal (computation) details. Objects commu-
nicate by means of aGEN action which sends an event
to a target object as shown in Figure reffig:classdiagram
(myC2->GEN(Set(size=2))). Events can be han-

def process(EventQueue):
while EventQueue not empty:
evt = EventQueue.pop()
if CurrentState reacts to evt:
t = transition reacting to evt

whose guard evaluates to True
compute states that will be
exited and entered
as a result of taking t

next = last state to be entered
perform exit actions, trigger
and enter actions

set CurrentState = next

def processAll(self):
for obj,evtQ in self.objectQueues.items():
o.process(evtQ)

Figure 5: Processing Concurrent Objects

deled asynchronously or synchronously (in which case
they are similar to remote method calls). We will mostly
use asynchronous message passing. To support concur-
rency between objects, our Statechart compiler will give
each object an event queue. All object queues will be
processed fairly as shown in the pseudo-code in Fig-
ure reffig:alg.

MODELLING GAME AI

Tank Wars

In 2005, Electronic Arts announced the EA Tank Wars
competition1, in which computer science students com-
pete against each other by writing artificial intelligence
(AI) components that control the movements of a tank.
In Tank Wars, two tanks, both controlled by an AI, fight
a one-on-one battle in a 100 by 100 meter world. Each
tank has a set of environment sensors, that sense infor-
mation about the tank’s remaining life points and fuel,
its position, the direction in which it is facing, it’s front
radar information (what objects – walls or enemy – are
located within 40 meters in front of the tank), if a tank is
hit and from where the shot was fired, and if the tank is
standing on top of a fuel or health station. In addition, a
tank has a rotating turret with a direction and a second,
more powerful radar, mounted on the turret, that detects
obstacles at distances up to 60 meters (see Figure 6).
The Tank Wars simulation istime-sliced (as opposed to
discrete-event). Every time slice, the AI component of
a tank is given the current state of the world as seen by
the tank sensors. The AI then has to decide whether to
change the speed of the tank, whether to turn, whether to
turn the turret, whether to fire and how far, and whether
to refuel or repair, if possible. Each turn lasts 50 mil-
liseconds – if the AI does not make a decision when the
time limit elapsed, the tank will not move during this
time slice.

1www.info.ea.com/company/company tw.php

T u r r e t R a d a r
R a n g e 4 0 m e t e r sF r o n t R a d a r

R a n g e 6 0 m e t e r sW i d t h 2 0 m e t e r s
Width20meters5 m e t e r s3 m

Figure 6: Tank Input

Time-slicing vs. Continuous Time
As mentioned above, the simulation in Tank Wars is
built on a time-sliced architecture. Every 50ms, the new
state of the environment is sent to the AI component.
Statecharts on the other hand are purely event-based. At
the modeling level, as well as when the model is simu-
lated, time is continuous, i.e. infinite time precision is
available. There is no time-slicing: a transition that is la-
beled with a time delay such asafter(t) means that
the transition should fire exactly after the time interval
t has elapsed,t being a real number. Continuous time
is most general, and is most appropriate at this level of
abstraction for several reasons:

• Modeling freedom: The modeler is not unnecessar-
ily constrained or encumbered with implementa-
tion issues, but can focus on the logic of the model.

• Symbolic analysis: Using timed logic it is possible
to analyze the model to prove properties.

• Simulation: Simulation can be done with infinite
accuracy (accuracy of real numbers on a computer)
in simulation environments such as SMV (refer-
ence).

• Reuse: Continuous time is the most general for-
malism, and can therefore be used in any simula-
tion environment.

When a model is used in a specific environment, ac-
tual code has to be synthesized, i.e. the continuous time
model has to be mapped to the time model used in the
target simulation. In games that are event-based such
a mapping is straightforward. This is however not the
case for Tank Wars, in which an approximation has to
take place: the synthesized code can execute at most
once every time-slice. Fortunately, if the time slice is
small enough compared to the dynamics of the system
to be modeled (such as the motion of a tank), the ap-
proximation is acceptable and the resulting simulation
close to equivant to a continuous time simulation.

F r o n t R a d a r B e h a v i o rN o E n e m y
N o W a l l

E n e m y S i g h t e d
W a l l S i g h t e d

[∃ r a y W i t h E n e m y] / e n e m y F o u n d F r o n t[\ r a y W i t h E n e m y] / e n e m y L o s t F r o n t[∃ r a y W i t h W a l l] / w a l l F o u n d F r o n t[\ r a y W i t h W a l l] / w a l l L o s t F r o n t
v o i d s e t R a y D a t a (d)b o o l e a n r a y W i t h E n e m y ()b o o l e a n e n e m y F r o n t ()b o o l e a n e n e m y R i g h t ()b o o l e a n e n e m y L e f t ()b o o l e a n w a l l F r o n t ()b o o l e a n w a l l R i g h t ()b o o l e a n w a l l L e f t ()

r a y s [2 0]F r o n t R a d a r
Figure 8: Input Event Generation

Bridging the Time-Sliced – Event-Driven Gap

In order to use event-based reasoning in a time sliced
environment, a bridge between the two worlds has to be
built. In a previous section, we described the semantics
of Rhapsody Statecharts where each object’s behavior is
described in a separate Statechart. We exploit the mod-
ularization capability offered by object-orientation and
define objects that encapsulate the perceived state of the
world. One object is defined for each sensor. At ev-
ery time slice, the Tank Wars framework calls the C++
functionstatic voidAI (constTankAIInput
in, TankAIInstructions & out) of the AI ob-
ject. Thein parameter contains a struct that describes
the state of all environment sensors. The function pro-
ceeds by storing the new sensor states in the appropriate
objects (see Figure 7).
The mapping from time-sliced to event-based simula-
tion is done at the level of the sensor objects. If a signif-
icant change occurred in the environment, then the sen-
sor should generate a corresponding event. What kind
of changes are significant and should therefore be sig-
nalled with an event depends entirely on the AI. A sim-
ple AI might only react to coarse grained environment
changes, whereas a more complex AI might want to re-
act to each slightest change.
The idea is illustrated in this paragraph using the
FrontRadar object. The class definition is given in
the left hand side of Figure 8. The actual radar informa-
tion obtained at each time slice is very accurate. In fact,
each radar sends out 20 rays, which reflect when they
hit an obstacle. During each turn, the reflection data of
every ray is made available to the AI, and the AI stores
the complete ray data in the front radar object by calling
setRayData() as shown in Figure 7.
Important events for a simple AI are the sighting of an
enemy or a wall, or the fact that an enemy or wall is
no longer on the radar. The creation of these events is
illustrated in theFrontRadarBehavior Statechart
in Figure 8. Whenever event handling takes place (we
chose in our implementation to process events at every
time slice), therayWithEnemy condition is evaluated
by calling the corresponding function provided by the

: A I: T a n k W a r s : F r o n t R a d a r : g r o u n d S e n s o r : p o s i t i o n S e n s o rA I (. . .) s e t R a y D a t a (d) s e t G r o u n d (t) s e t P o s i t i o n (p). . .
. . .

Figure 7: Converting Time Sliced Execution to Events

class, and if the condition evaluates to true, then the
transition fires and a corresponding event is generated.
The events from the sensors are then broadcast to other
statecharts at higher levels of abstraction. Sophisti-
cated AIs might have analyzer objects, for instance ob-
jects that keep track of the wall configuration in the
world, or objects that track the enemy. These ob-
jects react to sensor events and update their state. In
case an important situation is detected, for instance
tankEnteredDeadEnd, an appropriate event is cre-
ated and broadcast.
At the topmost level of abstraction is the object that
defines the high-level strategy of the tank. This ob-
ject might define different modes or priorities, for in-
stancefollowing the enemy, or looking for fuel. Modes
changes or other high-level command events such as
fleeFromEnemy are sent on to coordinator and plan-
ner objects that take care of the detailed execution of
these high-level commands. Finally, actuator objects
update their state when receiving low-level events such
asadvanceFullSpeed. After all events have been
processed, the state in the actuator objects is copied into
the out struct of theAI function and returned to the
Tank Wars simulation.
The event propagation through the different levels of ab-
straction is illustrated in Figure 9.

MODELLING TANK WARS

In the sequel, we show a few small parts of our sim-
ple Tank Wars AI model. All Statecharts are modelled
our AToM3 visual modelling environment [dLVA04].
Note that default states are not indicated by a small ar-
row but are rather denoted in green. Figure 10 shows
the Statechart for the main tank behaviour. The tank is
highly conservative and toggles betweenSearching
and resting (Stopped) mode. This strategy conserves
fuel and turns out to pay off. The autonomous be-
haviour gets interrupted when a wall is encountered in
which case the tank turns. Figure 11 shows wall detec-
tion at work. While inSearchingForWall mode,
the default state isWallUnknown. From any state
in SearchingForWall, a parametrizedUPDATE
triggers a transition to an appropriate state reflecting
the tank’s knowledge about the proximity to a wall.
Figure 12 demonstrates how the different fuel levels are

Seeking

Searching

Turning

Stopped AFTER(500)

AFTER(750)

VIS_WALL_UNKNOWN

VIS_WALL_FRONT

Figure 10: Conservative Tank Behaviour

SearchingForWall

WallUnknown

WallRight

WallFront

WallLeft

UPDATE [isWallLeft]

UPDATE [isWallFront]

UPDATE [isWallRight]

UPDATE [isWallUnknown]

Figure 11: Wall Detection

dealth with by means of different modes. Similarly, Fig-
ure 13 shows how overal tank health is monitored. It
also shows how the tank is ultimately destroyed when
health becomes negative. It will be clear from the above
that judicious use of state nesting combined with con-
current objects allows for concise and easy to under-
stand models.

We have compiled the above models into C++ code with

Fuel100 Fuel75 Fuel50 Fuel25

UPDATE [fuelLevel <= 50.0

UPDATE [fuelLevel <= 75.0

UPDATE [fuelLevel <= 25.0

Figure 12: Fuel Level Monitoring

T a n k A I
T i m e � s l i c e dI n p u t S e n s o r O b j e c t s A c t u a t o r O b j e c t s T i m e � s l i c e dO u t p u tA I B e h a v i o rF r o n t R a d a rF u e l M o n i t o rG P S S y s t e mT u r r e t. . .

A n a l y z e r O b j e c t s

W o r l dM a p p e r
E n e m yT r a c k e r T a n k E n g i n e

T u r r e t R o t a t o r
G u n

C o r r d i n a t o r /P l a n n e r O b j e c t s

T a n k � T u r r e tC o o r d i n a t o r
M o v e m e n tP l a n n e r

.
Figure 9: Event Propagation

MonitoringHealth

Health100 Health75 Health25Health50

Destroyed

UPDATE [health = [100, 75

UPDATE [health = [75,50[

UPDATE [health = [50,25[

UPDATE [health = [25,0[

UPDATE [health <= 0]

Figure 13: Tank Health Monitoring

Figure 14: Wall Encounter Execution Trace

our Statechart compiler. After inserting this code into
the Tank Wars game (in theAI function), realistic be-
haviour is observed as shown in Figure 14. The figure
shows a trace of a scenario where a tank encounters a
wall, initiates turning until the wall is no longer in the
line of sight, and finally continues on its way.

ACKNOWLEDGEMENTS

Huining Feng built the DChart visual modelling envi-
ronment, simulator and compiler [Fen04]. David Meu-
nier re-used the visual modelling environment and built

the first prototype of our Rhapsody Statecharts com-
piler (generating Python code). Both of these efforts
formed the basis for the work described in this paper.
Jörg Kienzle and Hans Vangheluwe greatfully acknowl-
edge partial support for this work through their National
Sciences and Engineering Research Council of Canada
(NSERC) Discovery Grant.

REFERENCES
[dLVA04] Juan de Lara, Hans Vangheluwe, and

Manuel Alfonseca. Meta-modelling
and graph grammars for multi-
paradigm modelling in AToM3. Soft-
ware and Systems Modeling (SoSyM),
3(3):194–209, August 2004. DOI:
10.1007/s10270-003-0047-5.

[Fen04] Thomas Huining Feng. DCharts, a formal-
ism for modeling and simulation based de-
sign of reactive software systems. M.Sc.
dissertation, School of Computer Science,
McGill University, February 2004.

[Har87] David Harel. Statecharts: A visual formal-
ism for complex systems.Science of Com-
puter Programming, 8:231 – 274, 1987.

[HK04] David Harel and Hillel Kugler. The rhap-
sody semantics of statecharts (or, on the ex-
ecutable core of the uml).LNCS, 3147:325
– 354, 2004.

[HN96] David Harel and Amnon Naamad. The
statemate semantics of statecharts.ACM
Transactions on Software Engineering and
Methodology, 5(4):293–333, October 1996.

